On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows
نویسندگان
چکیده
This paper describes the use of an a posteriori error estimator to control anisotropic mesh adaptation for computing inviscid compressible flows. The a posteriori error estimator and the coupling strategy with an anisotropic remesher are first introduced. The mesh adaptation is controlled by a single-parameter tolerance (TOL) in regions where the solution is regular, whereas a condition on the minimal element size hmin is enforced across solution discontinuities. This hmin condition is justified on the basis of an asymptotic analysis. The efficiency of the approach is tested with a supersonic flow over an aircraft. The evolution of a mesh adaptation/flow solution loop is shown, together with the influence of the parameters TOL and hmin. We verify numerically that the effect of varying hmin is concordant with the conclusions of the asymptotic analysis, giving hints on the selection of hmin with respect to TOL. Finally, we check that the results obtained with the a posteriori error estimator are at least as accurate as those obtained with anisotropic a priori error estimators. All the results presented can be obtained using a standard desktop computer, showing the efficiency of these adaptative methods. Copyright q 2008 John Wiley & Sons, Ltd.
منابع مشابه
Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملAnisotropic Simplex Mesh Adaptation by Metric Optimization for Higher-order Dg Discretizations of 3d Compressible Flows
We extend our optimization-based framework for anisotropic simplex mesh adaptation to three dimensions and apply it to high-order discontinuous Galerkin discretizations of steady-state aerodynamic flows. The framework iterates toward a mesh that minimizes the output error for a given number of degrees of freedom by considering a continuous optimization problem of the Riemannian metric field. Th...
متن کاملError estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations
This article considers a posteriori error estimation and anisotropic mesh refinement for three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization which has previously been developed for the compressible Navier-Stokes equations in two dimensions is extended to three dimensions. Symmetry boundary conditions are give...
متن کاملA 3D Goal-Oriented Anisotropic Mesh Adaptation Applied to Inviscid Flows in Aeronautics
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a f...
متن کامل